Abstract
Diabetes mellitus is a global concern, and early detection can prevent serious complications. 50% of those with diabetes live undiagnosed, disproportionately afflicting low-income groups. Non-invasive methods have emerged for timely detection; however, their limited accuracy constrains clinical usage. In this research, we present a novel Higher Dimensional Transformer (HDformer), the first Transformer-based architecture which utilizes long-range photoplethysmography (PPG) to detect diabetes. The long-range PPG maximizes signal contextual information when compared to the less-than 30 second signals commonly used in existing research. To increase the computational efficiency of HDformer’s long-range processing, a new attention module, Time Square Attention (TSA), is invented to achieve linear computational complexity with respect to the token volume while retaining the local/global dependencies. TSA converts the 1D inputs into 2D representations, grouping the adjacent points into a single 2D token. It then generates dynamic patches and feeds them into a gated mixture-of-experts (MoE) network, optimizing the learning on different attention areas. HDformer achieves state-of-the-art results (sensitivity 98.4, accuracy 97.3, specificity 92.8, AUC 0.929) on the standard MIMIC-III dataset, surpassing existing research. Furthermore, we develop an end-to-end solution where a low-cost wearable is prototyped to connect with the HDformer in the Cloud via a mobile app. This scalable, convenient, and affordable approach provides instantaneous detection and continuous monitoring for individuals. It aids doctors in easily screening for diabetes and safeguards underprivileged communities. The enhanced versatility of HDformer allows for efficient processing and learning of long-range signals in general one-dimensional time-series sequences, particularly for all biomedical waveforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.