Abstract

Myocardial infarction (MI) is the leading cause of death worldwide. Histone deacetylases (HDACs) collectively participate in the initiation and progression of heart diseases, including MI. This study aimed to investigate the roles of histone deacetylase 9 (HDAC9) in the development of MI. In vivo and in vitro assays were conducted to determine the effects of HDAC9 on heart function and MI. qRT-PCR was applied to determine the mRNA level. Western blot was performed for protein expression. Immunofluorescence was applied to detect the fluorescence tensity of Myog and Myod. CCK-8, flow cytometry and transwell assays were carried out for function analysis. HDAC9 was upregulated in MI models in vivo and in vitro. Downregulated HDAC9 modulated the changes in left ventricle ejection fraction (LVEF), left ventricle fractional shortening (LVFS) and left ventricular end-diastolic diameter (LVEDD) and left ventricular end-systolic diameter (LVESD). Moreover, HDAC9 knockdown activated NFE2-related factor 2 (Nrf2)/Keap1/HO-1 pathways. Additionally, HDAC9/Nrf2 axis modulated the proliferation, apoptosis and myogenesis of cardiomyocytes. Taken together, HDAC9 knockout induced the activation of Nrf2 and protected heart from MI injury. Thus, the HDAC9/Nrf2 axis can be a novel marker for the treatment of MI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.