Abstract
Epigenetics, including histone modifications and noncoding RNAs, affects abnormal placental function in pre-eclampsia (PE). This study was conducted to explore the role of histone deacetylase 4 (HDAC4) in trophoblast invasion and migration. The expression levels of HDAC4, microRNA (miR)-134-5p, and forkhead box protein M1 (FOXM1) in placentas from PE patients and healthy controls and their correlations were examined. HTR8/SVneo cells were cultured and underwent gene intervention. Then, trophoblast proliferation, invasion, and migration were evaluated by 5-ethynyl-2'deoxyuridine, Transwell, and scratch assays. The enrichments of HDAC4 and acetylated histone H3 at lysine 9 (H3K9Ac) on the miR-134-5p promoter were quantified by chromatin immunoprecipitation. The binding of miR-134-5p to FOXM1 was analyzed by dual-luciferase assay. HDAC4 and FOXM1 were downregulated while miR-134-5p was upregulated in PE placentas. HDAC4 downregulation impaired trophoblast proliferation, invasion, and migration while HDAC4 overexpression played the opposite role. Mechanically, HDAC4 deacetylated H3K9Ac to repress miR-134-5p expression by erasing H3K9Ac, reduced the binding of miR-134-5p to FOXM1, and then promoted FOXM1 transcription. miR-134-5p overexpression or FOXM1 downregulation abrogated the promotive role of HDAC overexpression in trophoblast invasion and migration. Our study unraveled a novel mechanism of trophoblast proliferation, invasion, and migration and proposed that HDAC4 may be a promising target for the treatment of PE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.