Abstract

Histone deacetylase 3 (HDAC3), a member of class I HDAC, regulates a wide variety of normal and abnormal physiological functions. Recent experimental studies suggested that inhibition of HDAC3 may increase acetylation of certain key signaling regulating proteins such as peroxisome proliferator-activated receptor γ (PPARγ), which plays a crucial role in modulating cerebrovascular function and integrity. However, the role of HDAC3 inhibition in cerebrovascular endothelium function under pathological condition has not been fully investigated. In this study, we tested the hypothesis that inhibition of HDAC3 by RGFP966, a highly selective HDAC3 inhibitor, promotes PPARγ activation by enhancing its protein acetylation, resulting in protection of oxygen glucose deprivation and reoxygenation (OGD/R)-induced increase of transendothelial cell permeability. In cultured primary human brain microvascular endothelial cells, our experimental results show that OGD/R increases transendothelial cell permeability and down-regulates junction protein expression. While we also detected HDAC3 activity increase and PPARγ activity decline after OGD/R. However, treatment with RGFP966 significantly attenuated the OGD/R-induced increase of transendothelial cell permeability and down-regulation of tight junction protein Claudin-5. These effects were observed to be dependent on HDAC3 activity inhibition-mediated PPARγ protein acetylation/activation. Lastly, HDAC3 small interfering RNA mimics the protective effects of RGFP966 on human brain microvascular endothelial cells. Taken together, our data indicate that HDAC3 inhibition might comprise a new therapeutic target for reducing blood-brain barrier integrity disruption and vascular dysfunctions in neurological disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.