Abstract

Recombinant BMP-7 inhibits the pathogenesis of renal injury in response to various stimuli. However, little is known about the molecular regulation of endogenous BMP-7 and its renal protective functions. We examined transcriptional regulation of Bmp-7 and its role in the pathogenesis of renal injury resulting from urinary tract dysfunction. Obstruction induced renal injury was modeled in vivo in mice by unilateral ureteral obstruction and in vitro in primary kidney cells by treatment with transforming growth factor-β, a profibrotic cytokine that is increased in the obstructed kidney. Unilateral ureteral obstruction resulted in the loss of BMP-7 expression in conjunction with histone deacetylation and transcriptional repression of the Bmp-7 promoter. The histone deacetylase inhibitor trichostatin A stimulated Bmp-7 expression in primary kidney cells. Trichostatin A also inhibited the expression of transforming growth factor-β dependent profibrotic genes in a manner that depended on BMP receptor signaling. These findings extended to the obstructed kidney in vivo, in which trichostatin A treatment restored the expression of Bmp-7 along with BMP-7 mediated suppression of transforming growth factor-β dependent signaling pathways. Finally, trichostatin A stimulated activation of the BMP-7 pathway the ameliorated obstruction induced renal injury by preventing disruption of the renal architecture and the development of renal fibrosis. These findings show that histone deacetylase dependent repression of Bmp-7 transcription is a critical event during the pathogenesis of renal injury in obstructive uropathy. Accordingly, treatment with histone deacetylase inhibitors represents a potentially effective strategy to restore BMP-7 expression and its renal protective functions during treatment of obstructive uropathy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call