Abstract
In this paper we propose an iterative Graph SLAM based approach to create HD maps from series production vehicles fleet data. Only high level sensor measurements provided by advanced driver assistance systems are used. This reduces the required bandwidth and makes this approach scalable to vehicle fleet data. Creating HD maps from fleet data enables up to date HD maps since no dedicated mapping vehicles are required. At first, the data is aligned based on odometry, GNSS and traffic sign measurements. Next, road boundary measurements are included, which results in an optimized lateral alignment. Finally, lane boundary association can be carried out. This results in an HD map containing high accuracy data of traffic signs, road and lane boundaries. The approach was evaluated using series production vehicle fleet data recorded on US highways and on a German autobahn covering a distance of 35.4km. The final HD map was evaluated with a groundtruth HD map and achieved an average error of 0.59m.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.