Abstract

Analysis of the omics data with the help of machine learning (ML) methods is limited by small sample sizes and a large number of variables. One possible approach to deal with such data is using algorithms for feature selection and reducing the dataset to include only those variables that are related to the studied phenomena. Existing simulators of the omics data were mostly developed with the goal of improving the methods for generations of high-quality data, that correspond with the highest possible fidelity to the real level of molecular markers in the biological materials. The current study aims to simulate the data on a higher level of generalization. Such datasets can then be used to perform tests of the feature selection and ML algorithms on systems that have structures mimicking those of real data, but where the ground truth may be implanted by design. They can also be used to generate contrast variables with the desired correlation structure for the feature selection. We proposed the algorithm for the reconstruction of the omic dataset that, with high fidelity, preserves the correlation structure of the original data with a reduced number of parameters. It is based on the hierarchical clustering of variables and uses principal components of the clusters. It reproduces well topological descriptors of the correlation structure. The correlation structure of the principal components of the clusters then is used to obtain datasets with correlation structures similar to the original data but not correlated with the original variables. The code and data is available at: https://github.com/p100mma/hcrs_omics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.