Abstract
We present a novel spatial hashing based data structure to facilitate 3D shape analysis using convolutional neural networks (CNNs). Our method builds hierarchical hash tables for an input model under different resolutions that leverage the sparse occupancy of 3D shape boundary. Based on this data structure, we design two efficient GPU algorithms namely hash2col and col2hash so that the CNN operations like convolution and pooling can be efficiently parallelized. The perfect spatial hashing is employed as our spatial hashing scheme, which is not only free of hash collision but also nearly minimal so that our data structure is almost of the same size as the raw input. Compared with existing 3D CNN methods, our data structure significantly reduces the memory footprint during the CNN training. As the input geometry features are more compactly packed, CNN operations also run faster with our data structure. The experiment shows that, under the same network structure, our method yields comparable or better benchmark results compared with the state-of-the-art while it has only one-third memory consumption when under high resolutions (i.e., 2563).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on visualization and computer graphics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.