Abstract
Voltage-gated ion channels are important determinants of cellular excitability. The Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) and KV7 (M-) channels are voltage-gated ion channels. Both channels are activated at sub-threshold potentials and have biophysical properties that mirror each other. KV7 channels inhibit neuronal excitability. Thus, mutations in KV7 channels that are associated with Benign Familial Neonatal Convulsions (BFNC) are likely to be epileptogenic. Mutations in HCN channels have also been associated with idiopathic epilepsies such as GEFS+. In addition, HCN channel expression and function are modulated during symptomatic epilepsies such as temporal lobe epilepsy. It is, though, unclear as to whether the changes in HCN channel expression and function associated with the various forms of epilepsy promote epileptogenesis or are adaptive. In this review, we discuss this as well as the potential for KV7 and HCN channels as drug targets for the treatment of epilepsy.This article is part of the Special Issue entitled ‘New Targets and Approaches to the Treatment of Epilepsy’.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.