Abstract

Human cytomegalovirus has evolved multiple strategies to interfere with immune recognition by the host. A variety of mechanisms affect antigen presentation by major histocompatibility complex class I molecules resulting in a reduced class I cell-surface expression. This downregulation is expected to trigger natural killer (NK) cytotoxicity, requiring counteraction by the virus to establish long-term infection. Here we describe that the human cytomegalovirus gpUS6 protein, which has been demonstrated to downregulate the expression of human leukocyte antigen (HLA) class I and the presentation of cytotoxic T lymphocyte epitopes by blocking transporter associated with antigen presentation (TAP function), does not affect the ability of HLA-E to inhibit NK cell mediated lysis of K-562 cells by interaction with CD94/NKG2A expressed on NK cells. Cell surface expression and function of HLA-E is not altered although gpUS6 inhibits TAP-dependent peptide transport by 95%. Moreover, HLA-E molecules presenting HLA class I signal sequence-derived peptides are functionally detectable on transfected TAP-deficient RMA-S cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.