Abstract
YAP1 functions in lineage differentiation of pluripotent embryonic stem cells (ESCs); however, the detailed mechanisms underlying the regulation of YAP1 activity during ESC differentiation remain elusive. Here, we report that hCINAP serves as a negative regulator of YAP1 during ESC fate decisions. The expression of mCINAP, the murine homolog of hCINAP, is downregulated during the differentiation process of murine ESC (mESC) ectoderm lineage, leading to liquid-liquid phase separation (LLPS) of NEDD4 and activation of YAP1. Mechanistically, hCINAP interacts with and prevents NEDD4 from forming cytoplasmic condensates that compartmentalize YAP1 and its kinase NLK, facilitating YAP1 phosphorylation at Ser128 and promoting YAP1 activation. mCINAP depletion leads to the formation of NEDD4 condensates and YAP1 activation, which impedes endoderm differentiation of mESCs. Our study shows that hCINAP is a vital regulator of YAP1 activity and is essential for stem cell fate decisions, which provides mechanistic insight into early embryogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.