Abstract
Federated learning (FL) is a new artificial intelligence concept that enables Internet-of-Things (IoT) devices to learn a collaborative model without sending the raw data to centralized nodes for processing. Despite numerous advantages, low computing resources at IoT devices and high communication costs for exchanging model parameters make applications of FL in massive IoT networks very limited. In this work, we develop a novel compression scheme for FL, called <i>high-compression federated learning (HCFL)</i>, for very large scale IoT networks. HCFL can reduce the data load for FL processes without changing their structure and hyperparameters. In this way, we not only can significantly reduce communication costs, but also make intensive learning processes more adaptable on low-computing resource IoT devices. Furthermore, we investigate a relationship between the number of IoT devices and the convergence level of the FL model and thereby better assess the quality of the FL process. We demonstrate our HCFL scheme in both simulations and mathematical analyses. Our proposed theoretical research can be used as a minimum level of satisfaction, proving that the FL process can achieve good performance when a determined configuration is met. Therefore, we show that HCFL is applicable in any FL-integrated networks with numerous IoT devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.