Abstract
To investigate the role of hepatitis B virus X-protein (HBx)-induced reactive oxygen species (ROS) on liver carcinogenesis in HBx transgenic mice and HepG2-HBx cells. Cell growth rate was analyzed, and through western blotting, mitogenic signaling was observed. Endogenous ROS from wild and HBx transgenic mice and HepG2-Mock and HBx cells were assayed by FACScalibur. Identification of oxidized and reduced phosphatase and tensin homolog (PTEN) was analyzed through N-ethylmaleimide alkylation, nonreducing electrophoresis. We observed that the cell-proliferation-related phosphoinositide 3-kinase/Akt pathway is activated by HBx in vivo and in vitro. Increased ROS were detected by HBx. Tumor suppressor PTEN, via dephosphorylation of Akt, was oxidized and inactivated by increased ROS. Increased oxidized PTEN activated the mitogenic pathway through over-activated Akt. However, treatment with ROS scavenger N-acetyl cysteine can reverse PTEN to a reduced form. Endogenously produced ROS also stimulated HBx expression. HBx induced ROS promoted Akt pathways via oxidized inactive PTEN. HBx and ROS maintained a positive regulatory loop, which aggravated carcinogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.