Abstract

To analyze the risk and reason of false-negative HBV DNA results of NAT reagents among blood donations of China and discuss the necessity of two amplification targets for HBV DNA tests among donations. In this study, samples that showed discordant results on two commercially available assay platforms were further detected by established in-house methods based on conserved regions of the HBV genome. The HBV concentration of these samples was determined using two commercially available reagents. The samples with high titers of HBV were detected by an in-house method. The samples showing high Ct differences between two regions in the in-house method were further sequenced and aligned with primers and probes. The results showed that the established method has a good detection performance. The mismatch between reverse primers and sample sequences led to decreased detection capacity of S and C regions by the in-house method, but it could be compensated by another region. Among the false-negative samples detected by commercial reagents, most were because of low titers; however, there were 7 samples with HBV DNA concentrations much higher than the LOD of the commercial reagents, which may be due to mismatch of the primer or probe. This study highlights the potential risk of HBV false-negative detection by commercial NAT reagents. The dual-target assay may be helpful for HBV screening and reduce the risk of false-negative detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.