Abstract

Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or “empty” capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B.

Highlights

  • Hepatitis B virus (HBV) is a small DNA virus that chronically infects 240 million people worldwide and causes approximately 686,000 deaths annually due to various severe liver diseases, including cirrhosis, hepatocellular carcinoma (HCC) and liver failure [1]

  • Persistent HBV infection relies on stable maintenance of a nuclear episomal viral genome called covalently closed circular DNA, the sole transcriptional template supporting viral replication

  • We report an intriguing observation that selected core protein allosteric modulators inhibit nucleocapsid assembly, but can act on assembled, nucleus-bound nucleocapsids to promote their uncoating and consequentially interfere with cccDNA biosynthesis

Read more

Summary

Introduction

Hepatitis B virus (HBV) is a small DNA virus that chronically infects 240 million people worldwide and causes approximately 686,000 deaths annually due to various severe liver diseases, including cirrhosis, hepatocellular carcinoma (HCC) and liver failure [1]. Approved direct-acting antiviral agents against HBV are six nucleos(t)ide analogues that inhibit viral DNA polymerase with varying potency and barriers to drug resistance [2]. Those viral DNA polymerase inhibitors significantly reduce viral load and prevent liver disease progression, they rarely cure HBV infection due to their inability to eradicate cccDNA [3]. HBV core protein is a small polypeptide of 183 amino acid residues. It exists in infected hepatocytes as several distinct quaternary structures and plays multiple roles in the viral replication cycle [4]. It was reported that core protein can be hijacked by host immune responses to recruit cytokine-induced DNA cytosine deaminase APOBEC3A to cccDNA minichromosomes, which results in cytosine deamination and decay of cccDNA [11,12]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.