Abstract

In this paper, a performance optimization of a digital signal processing driven and dynamically biased 3G handset's power amplifier technique is proposed, simulated and implemented. This technique uses a new dynamically base biasing heterojunction bipolar transistor which reduces the dc power consumption at low level drive and at the same time compensates the nonlinear distortion at high power drive of the PA in the transmitter of a universal mobile telecommunications system (UMTS) system with a high integrability. With the UMTS system, at low level drive, the dc power reduction is about 60% and at high emission power, the nonlinearity of the PA is corrected to respect the adjacent channel power ratio (ACPR) and error vector magnitude constraints imposed by the UMTS. With our system, the ACPR and efficiency of the power amplifier are improved, respectively, by 5 dB and 8%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.