Abstract
Green functions in a quantum field theory can be expanded as bivariate series in the coupling and a scale parameter. The leading logs are given by the main diagonal of this expansion, i.e. the subseries where the coupling and the scale parameter appear to the same power; then the next-to leading logs are listed by the next diagonal of the expansion, where the power of the coupling is incremented by one, and so on. We give a general method for deriving explicit formulas and asymptotic estimates for any next-to$^k$ leading-log expansion for a large class of single scale Green functions. These Green functions are solutions to Dyson-Schwinger equations that are known by previous work to be expressible in terms of chord diagrams. We look in detail at the Green function for the fermion propagator in massless Yukawa theory as one example, and the Green function of the photon propagator in quantum electrodynamics as a second example, as well as giving general theorems. Our methods are combinatorial, but the consequences are physical, giving information on which terms dominate and on the dichotomy between gauge theories and other quantum field theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.