Abstract

The opportunity of replacing expensive feedstuffs with agro-industrial by-products in the diet of food producing animals is raising increasing interest while addressing global concern for the scarcity of natural resources and environmental impact of livestock farming. Hazelnut peels, rich in fiber and vitamins and characterized by a high concentration of fats, is considered a suitable ingredient to be included in the diet of ruminants. The aim of this research was to assess the effect of dietary hazelnut peels on the chemical and sensory properties of sheep cheese during refrigerated storage. To this purpose, 20 Comisana lactating ewes were randomly assigned to two experimental groups, control (C) and hazelnut peels (HP), balanced for parity, milk yield and body weight. Bulk milk collected from the 2 groups was used to produce 5 Pecorino cheeses for each group. After 40 d of aging, each cheese of each experimental group was divided into 3 pieces: 1 piece was sampled for analyses (C0, HP0) and 2 were wrapped in PVC film, simulating the condition of pre-wrapped products, and analyzed after 7 (C7, HP7) and 14 days of storage (C14, HP14) at 8°C with 80% moisture. The cheeses were analyzed for chemical and fatty acid composition, sensory analysis, odor active compounds and SmartNose. As expected, HP cheeses presented a higher lipid content compared to C, a lower content in SFA and PUFA, and a greater content in MUFA. A triangle test revealed a clear distinction between the 2 groups (α = 0.01) The sensory profile showed a significant effect on holes (P < 0.05) and a marginal production of off-flavors linked to spicy and acid attributes for HP cheeses The volatile profile of C and HP cheese samples showed a good similarity, partially explained by the short ripening time and the absence of 2-nonanone in HP7, suggesting a higher antioxidant protection grade of this cheese compared to the others. These results were confirmed by Smart Nose analysis. Further studies on vitamin content should be conducted in order to investigate the interactions between the presence of antioxidant volatile compounds and the oxidative stability of ewe cheese.

Highlights

  • The global concern for the scarcity of natural resources dramatically increased over the last decades

  • Further studies on vitamin content should be conducted in order to investigate the interactions between the presence of antioxidant volatile compounds and the oxidative stability of ewe cheese by calculating the Degree of Antioxidant Protection (DAP)

  • The separation of HP7 group was supported by Gas Chromatography Olfactometry (GC/O) results, in HP7 cheeses, two unique esters (2-methylbutyl acetate and ethyl isohexanoate) and two unique sulfur compounds were detected, whereas, pentanal and 2-nonanone, this latter revealed in all the other cheeses, were absent

Read more

Summary

Introduction

The global concern for the scarcity of natural resources dramatically increased over the last decades. For this reason, FAO and EU promote the principles of 3R (Reduce, Reuse, and Recycle) for a sustainable development in all the productive sectors, including livestock production. Animal feedstuffs production, processing and transport are highly demanding in terms of natural resources. Livestock farming greatly impacts on the environment. In this context, the inclusion of agro-industrial by-products in the diet of food producing animals as a replacer of conventional, and more expensive feedstuffs, is under investigation to mitigate the impact of livestock production [1]. Most of the food-derived by-products are rich of bioactive molecules that can exert positive effects both on animal welfare and product quality [2]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call