Abstract

Taxanes form a large family of compounds, the most famous of which is paclitaxel, an effective antitumor drug currently used against various cancers. First approved for the treatment of ovarian and breast cancer, it was subsequently endorsed for the treatment of many other cancer pathologies. Originally extracted from the bark of Taxus brevifolia, it has also been found in other Taxus species. Most of the drug for clinical use is currently produced by semi-synthesis, starting from a natural precursor, 10-deacetylbaccatin III recovered from the needles of Taxus baccata. The yield of paclitaxel and its precursors from yew is very low, and is not sufficient to satisfy the commercial requirements. Many attempts have been made to explore new paclitaxel-producing species including microorganisms. However, the availability of paclitaxel and related compounds is still low. The discovery of taxanes in differentiated and undifferentiated tissue of Corylus avellana suggested that the production of these compounds is not a peculiarity of the genus Taxus, giving hope for the future availability of these compounds. Here we review works aimed at exploring new paclitaxel-producing organisms with different ecology to Taxus plants. Particular focus has been placed on highlighting the discovery of taxanes in angiosperm plants. Thus, it is conceivable that, by developing appropriate methodologies, new plant species could be employed for the commercial production of paclitaxel and other antineoplastic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.