Abstract
Smouldering peat fires are reported across continents and their emissions result in regional haze crisis (large scale accumulation of smoke at low altitudes) and large carbon foot prints. Inorganic content (IC) and bulk density vary naturally in peatlands and are among the important parameters governing peat fires. However, their roles in fire emissions remain unknown. In this work, bench-scale burning of sphagnum peat conditioned to different values of IC and bulk densities were conducted in the laboratory environment. Mass loss rate, spread rate and transient emissions of 20 gas species and particles (PM10, PM2.5 and PM1) were simultaneously investigated. We found that peat with 50% moisture content can self-sustain smouldering propagation if IC is less than 40%, or its bulk density is lower than 287.5 kg m−3. Increasing IC or bulk density decreases peat mass loss rate and spread rate. High IC peat releases lower gas fluxes (especially for CH4 and NH3) throughout the experiment. In the ignition stage, increasing IC leads to an increase in particles with diameter between 1 and 2.5 μm; in the fire spread stage, IC has no influence on the particle fluxes. In contrast, increasing bulk density delays both gas and particle emission fluxes without altering the smoke composition significantly. The fundamental understanding of how soil properties affect peat wildfires facilitates the development of mitigation technologies against haze.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.