Abstract

Study of hazardous microplastics in the natural water resources is minimal compared to the sea salt, seafood and even packaged water. We presented results of the first baseline research of microplastics in groundwater and surface water from the coastal south India (Tamil Nadu state) and evaluated the heavy metal adsorption capacities of different polymers. The microplastics (up to 19.9 particles/L) were of relatively larger size in surface water (0.34–4.30 mm) compared to the groundwater (0.12–2.50 mm). Polyamide (nylon), polyester, polypropylene, polyethylene, polyvinyl chloride and cellulose were the common polymers and all of them showed different capacities of heavy metal adsorption. In two different experimental sites, the polypropylene showed higher capacity of adsorption compared to other polymers in the following orders: (i) cadmium > manganese > lead > arsenic and (ii) manganese > zinc > arsenic > lead > copper. The polyamide, however, exhibited better adsorption only for manganese. Similar to other recent findings, our results associate microplastics as a major vector to transport heavy metals in the water system. Formulation of strategies to reduce the environmental risks of particulate plastics as a potent vector for transportation of the toxic trace elements and subsequent, impact on human health through the OSPRC framework (Origins, Sources, Pathways, Receptors and Consequence) in the study area would require future research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.