Abstract
ABSTRACT We study the estimation of a hazard rate function based on censored data by non-linear wavelet method. We provide an asymptotic formula for the mean integrated squared error (MISE) of nonlinear wavelet-based hazard rate estimators under randomly censored data. We show this MISE formula, when the underlying hazard rate function and censoring distribution function are only piecewise smooth, has the same expansion as analogous kernel estimators, a feature not available for the kernel estimators. In addition, we establish an asymptotic normality of the nonlinear wavelet estimator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.