Abstract

Debris flow often causes enormous loss to life and property, especially on alluvial fans. Engineering structures such as retention check dams are essential to reduce the damage. In hazard mitigation evaluation and planning it is of significance to determine the location, size and type of dam and the effects of damage mitigation. We present a numerical simulation method using Kanako simulator for hazard mitigation planning of debris flow disaster in Tanjutani Gully, Kyoto City, Japan. The simulations were carried out for three situations: 1) the simulations of erosion, deposition, hydrograph changing and inundation when there were no mitigation measures; 2) the simulations of check dams in four locations (470 m, 810 m, 1,210 m and 1,610 m from the upstream end) to identify the best location; 3) the simulations of check dams of three types (closed, slit and grid) to analyze their effects on sediment trapping and discharge reduction. Based on the simulations, it was concluded that two closed check dams (located at 470 m and 1,610 m from the upstream end) in the channel and a drainage channel on the alluvial fan can reduce the risk on the alluvial fan to an acceptable level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.