Abstract
Introduction. This article describes an algorithm developed by the authors for the operation of a crane anemometer that measures the gust rate and average wind speed and determines the predicted wind speed on the basis of it. The main part. The main influencing parameters and their measurement intervals are defined for the construction of the anemometer algorithm. The method of calculation of gust velocity and average wind velocity from the data of the pulse sensor of the helicopter anemometer is presented. The method of wind speed forecasting based on the construction of an extrapolation function is given.Results. An anemometer program algorithm with extended capabilities relative to existing analogues has been developed. The instrument not only captures the hazard at the moment, but also predicts its future development. On the basis of the analysis of wind dynamics studies, a table has been compiled of the levels of the determined parameters (gust rate, average speed and projected average wind speed) and the signals given to the operator of the crane. For each type of signal, the value of the removal delay is defined.Conclusions. ZAO KROS Engineering and Technical Centre has made a prototype anemometer using the principles described in this article. The device meets all requirements of the regulatory and technical documentation. Further work on the improvement of the algorithm of its work will make it possible to increase the safety of technological processes carried out with the use of elevated structures.
Highlights
This article describes an algorithm developed by the authors for the operation
their measurement intervals are defined for the construction of the anemometer algorithm
The method of wind speed forecasting based on the construction of an extrapolation function is given
Summary
Необходимо установить, какие параметры необходимо получать, и ограничить диапазон их измерения. Так как оператора крана необходимо заблаговременно предупредить об усилении ветра, чтобы он успел отреагировать на его усиление (например о достижении 80% от допустимой), то минимальный порог определения скорости следует принять меньше 7 м/с. А не фиксации значений средней скорости ветра (как в задачах метеорологии), наилучшим из представленного диапазона является меньший период осреднения, то есть 2 мин. Но осреднение (за 2 мин) сглаживает значения мгновенной скорости, а если достигается максимально допустимое значение ветра при порыве, то работу крана также следует прерывать. Рисунок 3 – Скорость вращения датчика скорости ветра при циклически изменяющейся скорост. Так как может возникнуть ветровая ситуация, при которой скорость колеблется около предельного значения, следует отключать сигнал не сразу после снижения скорости ветра ниже порогового значения активации режима. Для каждого случая было определено своё значение величины задержки снятия сигнализации
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Russian Automobile and Highway Industry Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.