Abstract

Bivariate survival function can be expressed as the composition of marginal survival functions and a bivariate copula and, consequently, one may estimate bivariate hazard functions via marginal hazard estimation and copula density estimation. Leveraging on earlier developments on penalized likelihood density and hazard estimation, a nonparametric approach to bivariate hazard estimation is being explored in this article. The new ingredient here is the nonparametric estimation of copula density, a subject of interest by itself, and to accommodate survival data one needs to allow for censoring and truncation in the setting. A simple copularization process is implemented to convert density estimates into copula densities, and a cross-validation scheme is devised for density estimation under censoring and truncation. Empirical performances of the techniques are investigated through simulation studies, and potential applications are illustrated using real-data examples and open-source software.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.