Abstract
This paper proposes the integration of image processing techniques (such as image segmentation, feature extraction and selection) and a knowledge representation approach in a framework for the development of an automatic system able to identify, in real time, unsafe activities in industrial environments. In this framework, the visual information (feature extraction) acquired from video-camera images and other context based gathered data are represented as Set of Experience Knowledge Structure (SOEKS), a formal decision event for reasoning and risk evaluation. Then, grouped sets of decisions from the same category are stored as decisional experience Decisional DNA (DDNA) to support future decision making events in similar input images. Unlike the existing sensor and vision-based approaches, that required rewriting most of the code when a condition, situation or requirement changes, our platform is an adaptable system capable of working in a variety of video analysis scenarios. Depending on the safety requirements of each industrial environment, users can feed the system with flexible rules and in the end, the platform provides decision makers with hazard evaluations that reuse experience for event identification and correction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.