Abstract

Biocides used in offshore oil and gas operations could be present in water discharges, and thus identifying such chemicals and their hazard could help address concerns regarding non-target organisms. Aquatic toxicity data, queried from different sources and augmented with predictive models, were used to develop species sensitivity distributions and their corresponding 5th percentile hazard concentrations (HC5s). Curated data, including over 1000 empirical records for 137 species, indicated no evidence of bias when comparing sensitivity between marine and freshwater species, even when predicted data were used. HC5s facilitated estimation of an acute-to-chronic ratio (ACR=10), appropriate for most chemicals and useful in filling data gaps. Comparison of chronic-HC5s with the default approach for deriving predicted no effect concentrations showed that the latter systematically overstates aquatic hazard. The present approach shows promise of using acute-to-chronic HC5 ratios for defining assessment factors for different chemical classes, instead of the use of generic assessment factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call