Abstract
One way to compensate for the limitations of automated vehicles is to use a remote operator as a fallback controller. Indeed, this has been proposed for fleet management and intermittent vehicle control. However, existing remote operation applications have demonstrated control challenges, such as latency and bandwidth, that inhibit the effectiveness of human operators. Additionally, human factors challenges arising due to the roles of multiple remote operators managing multiple vehicles further complicates these interventions. This paper uses the Systems Theoretic Process Analysis hazard analysis technique to identify system-level issues related to the remote operation of automated vehicles. Human factors challenges are identified through the lens of two control loops that link remote drivers, dispatchers, and vehicle automation. These control loops reveal familiar challenges, such as situation awareness and mental model mismatches, as well as novel challenges, such as poorly synchronized and misaligned control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.