Abstract

We provide two novel ways to compute the surface gravity (kappa ) and the Hawking temperature (T_{H}) of a stationary black hole: in the first method T_{H} is given as the three-volume integral of the Gauss–Bonnet invariant (or the Kretschmann scalar for Ricci-flat metrics) in the total region outside the event horizon; in the second method it is given as the surface integral of the Riemann tensor contracted with the covariant derivative of a Killing vector on the event horizon. To arrive at these new formulas for the black hole temperature (and the related surface gravity), we first construct a new differential geometric identity using the Bianchi identity and an antisymmetric rank-2 tensor, valid for spacetimes with at least one Killing vector field. The Gauss–Bonnet tensor and the Gauss–Bonnet scalar play a particular role in this geometric identity. We calculate the surface gravity and the Hawking temperature of the Kerr and the extremal Reissner–Nordström holes as examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call