Abstract

The Hawking radiation is considered as a quantum tunneling process, which can be studied in the framework of the Hamilton-Jacobi method. In this study, we present the wave equation for a mass generating massive and charged scalar particle (boson). In sequel, we analyze the quantum tunneling of these bosons from a generic 4-dimensional spherically symmetric black hole. We apply the Hamilton-Jacobi formalism to derive the radial integral solution for the classically forbidden action which leads to the tunneling probability. To support our arguments, we take the dyonic Reissner-Nordstr\"{o}m black hole as a test background. Comparing the tunneling probability obtained with the Boltzmann formula, we succeed to read the standard Hawking temperature of the dyonic Reissner-Nordstr\"{o}m black hole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.