Abstract

We study the absorption probability and Hawking radiation of the scalar field in a d-dimensional black hole with quantum correction arising from the polymer quantization. We find that the quantum length scale k (i.e., the bounce radius) modifies the standard results in greybody factors and Hawking radiation on the brane and into the bulk. For the black hole with the larger mass M the effects of the parameter k in the four-dimensional black hole spacetime are entirely different from those in the high dimensional cases. When the mass of black hole M becomes very small, we also find that only the sign of the change rate of the greybody factors on the brane with respect to the dimensional number depends sharply on the bounce radius k. These information can help us know more about the extra dimension and the black holes with quantum correction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.