Abstract

We consider a simple realization of an event horizon in the flow of a one-dimensional two-component Bose-Einstein condensate. Such a condensate has two types of quasiparticles; In the system we study, one corresponds to density fluctuations and the other to polarization fluctuations. We treat the case in which a horizon occurs only for one type of quasiparticles (the polarization ones). We study the one- and two-body signal associated to the analog of spontaneous Hawking radiation and demonstrate by explicit computation that it consists only in the emission of polarization waves. We discuss the experimental consequences of the present results in the domain of atomic Bose-Einstein condensates and also for the physics of exciton-polaritons in semiconductor microcavities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call