Abstract

The persistence of a suitable notion of black hole thermodynamics in Lorentz breaking theories of gravity is not only a non-trivial consistency test for such theories, it is also an interesting investigation per se, as it might help us identifying the crucial features at the root of these surprising laws governing such purely gravitational objects. In past investigations, controversial findings were presented in this sense. With the aim of settling this issue, we present here two complementary derivations of Hawking radiation in geometries endowed with universal horizons: a novel feature of back holes in Lorentz breaking theories of gravity which reproduces several properties normally characterizing Killing horizons. We find that both the derivations agree on the fact that the Hawking temperature associated to these geometries is set by the generalized universal horizon peeling surface gravity, as required for consistency with extant derivations of the first law of thermodynamics for these black holes. We shall also comment on the compatibility of our results with previous alternative derivations and on their significance for the survival of the generalized second law of black hole thermodynamics in Lorentz breaking theories of gravity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.