Abstract

We consider the so-called Hopfield model for the electromagnetic field in a dielectric dispersive medium in a framework in which one allows a space-time dependence of microscopic parameters, aimed to a phenomenological description of a space-time varying dielectric perturbation induced by means of the Kerr effect. We discuss the analogue Hawking effect, by first analyzing the geometrical optics for the Hopfield model, and then by introducing a simplified model which has the bonus to avoid many difficulties which are involved in the full Hopfield model, still keeping the same dispersion relation. Amplitude calculations are indicated, and generalized Manley-Rowe identities are derived in a quantum scattering theory framework. Our main result is an analytical calculation of the spontaneous thermal emission in the single-branch case, which is provided non perturbatively for the first time in the framework of dielectric black holes. An universal mechanism for thermality between optical black holes and acoustic black holes is also pointed out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.