Abstract
High performance in modern computing platforms requires programs to be parallel, distributed, and run on heterogeneous hardware. However programming such architectures is extremely difficult due to the need to implement the application using multiple programming models and combine them together in ad-hoc ways. To optimize distributed applications both for modern hardware and for modern programmers we need a programming model that is sufficiently expressive to support a variety of parallel applications, sufficiently performant to surpass hand-optimized sequential implementations, and sufficiently portable to support a variety of heterogeneous hardware. Unfortunately existing systems tend to fall short of these requirements. In this paper we introduce the Distributed Multiloop Language (DMLL), a new intermediate language based on common parallel patterns that captures the necessary semantic knowledge to efficiently target distributed heterogeneous architectures. We show straightforward analyses that determine what data to distribute based on its usage as well as powerful transformations of nested patterns that restructure computation to enable distribution and optimize for heterogeneous devices. We present experimental results for a range of applications spanning multiple domains and demonstrate highly efficient execution compared to manually-optimized counterparts in multiple distributed programming models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.