Abstract

We present ErasureBench, an open-source framework to test and benchmark erasure coding implementations for distributed storage systems under realistic conditions. ErasureBench automatically instantiates and scales a cluster of storage nodes, and can seamlessly leverage existing failure traces. As a first example, we use ErasureBench to compare three coding implementations: a (10,4) Reed-Solomon (RS) code, a (10,6,5) locally repairable code (LRC), and a partition of the data source in ten pieces without error-correction. Our experiments show that LRC and RS codes require the same repair throughput when used with small storage nodes, since cluster and network management traffic dominate at this regime. With large storage nodes, read and write traffic increases and our experiments confirm the theoretical and practical tradeoffs between the storage overhead and repair bandwidth of RS and LRC codes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.