Abstract

Stability of the ‘guardian of the genome’ tumor suppressor protein p53 is regulated predominantly through its ubiquitination. The ubiquitin-specific protease HAUSP plays an important role in this process. Recent experiments showed that p53 demonstrates a differential response to changes in HAUSP which nature and significance are not understood yet. Here a data-driven mathematical model of the Mdm2-mediated p53 ubiquitination network is presented which offers an explanation for the cause of such a response. The model predicts existence of the HAUSP-regulated switch from auto- to p53 ubiquitination by Mdm2. This switch suggests a potential role of HAUSP as a downstream target of stress signals in cells. The model accounts for a significant amount of experimental data, makes predictions for some rate constants, and can serve as a building block for the larger model describing a complex dynamic response of p53 to cellular stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.