Abstract

Dealing with infinite iterated function systems we introduce and develop the ergodic theory of Holder systems of functions similarly as in [HU] and [HMU]. In the context of conformal infinite iterated function systems we prove the volume lemma for the Hausdorff dimension of the projection onto the limit set of a shift invariant measure. This can be considered as a Billingsley type result. Our cenral goal is to demonstrate the appearance of the "singularity-absolute continuity" dichotomy for equilibrium states of Holder systems of functions which has been observed in [PUZ,I] and [PUZ,II] (see also [DU1] and [DU2]) in the setting of rational functions of the Riemann sphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.