Abstract
We give upper and lower bounds for the Hausdorff dimensions for a class of graph-directed measures when its underlying directed graph is the infinite N-ary tree. These measures are different from graph-directed self-similar measures driven by finite directed graphs and are not necessarily Gibbs measures. However our class contains several measures appearing in fractal geometry and functional equations, specifically, measures defined by restrictions of non-constant harmonic functions on the two-dimensional Sierp\'inski gasket, the Kusuoka energy measures on it, and, measures defined by solutions of de Rham's functional equations driven by linear fractional transformations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.