Abstract

We discuss the Hausdorff convergence of hyperbolic components in parameter space as a one-parameter family of transcendental functions is dynamically approximated by polynomials. This convergence is strongly suggested by computer experiments and is proved in a weaker form, which is illustrated with exponential, sine and cosine families. Furthermore, we consider the convergence of subhyperbolic components. Our result also applies to the antiholomorphic exponentials, which allows us to investigate the limit shape of the unicorns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.