Abstract
We have shown in a companion paper (e Silva et al (2019)) that when a spacetime is globally hyperbolic with a (possibly empty) smooth timelike boundary , then a metrizable topology, the closed limit topology (CLT), can be advantageously adopted on the Geroch–Kronheimer–Penrose causal completion (or c-completion for short) of . The CLT retains essentially all the good properties of other topologies previously defined in the literature, such as the well-known chronological topology. In this paper we prove that if a globally hyperbolic spacetime admits a conformal boundary, defined in such broad terms as to include all the standard examples in the literature, then the latter is homeomorphic to the causal boundary endowed with the CLT. Then, we revisit the new definitions of (future) null infinity and black hole as given in terms of the c-boundaries in another recent work Costa e Silva et al (2018 J. High Energy Phys. JHEP(2018)123). We show that a number of the attending technicalities can be simplified for globally hyperbolic spacetimes when the CLT is considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.