Abstract
Abstract: Twitter's central goal is to enable everybody to make and share thoughts and data, and to communicate their suppositions and convictions without boundaries. Twitter's job is to serve the public discussion, which requires portrayal of a different scope of points of view. Yet, it does not advance viciousness against or straightforwardly assault or undermine others based on race, nationality, public cause, rank, sexual direction, age, inability, or genuine illness. Hate Speech can hurt a person or a community. So, it is not appropriate to use hate speech. Now, due to increase in social media usage, hate speech is very commonly used on these platforms. So, it is not possible to identify hate speeches manually. So, it is essnetial to develop an automated hate speech detection model and this resaech work shows different approaches of Natural Language Processing for classification of Hate Speech through Machine Learning Algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Research in Applied Science and Engineering Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.