Abstract
Social media has changed the world and play an important role in people lives. Social media platforms like Twitter, Facebook and YouTube create a new dimension of communication by providing channels to express and exchange ideas freely. Although the evolution brings numerous benefits, the dynamic environment and the allowable of anonymous posts could expose the uglier side of humanity. Irresponsible people would abuse the freedom of speech by aggressively express opinion or idea that incites hatred. This study performs hate speech and offensive language detection. The problem of this task is there is no clear boundary between hate speech and offensive language. In this study, a selected new features set is proposed for detecting hate speech and offensive language. Using Twitter dataset, the experiments are performed by considering the combination of word n-gram and enhanced syntactic n-gram. To reduce the feature set, filter-embedded combining feature selection is used. The experimental results indicate that the combination of word n-gram and enhanced syntactic n-gram with feature selection to classify the data into three classes: hate speech, offensive language or neither could give good performance. The result reaches 91% for accuracy and the averages of precision, recall and F1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.