Abstract

HASPIN kinase-catalyzed phosphorylation of histone H3 on threonine 3 (H3T3p) directs the activity and localization of chromosomal passenger complex (CPC) and spindle assembly checkpoint (SAC) to regulate chromosome condensation and segregation in both mitosis and meiosis. However, the function of HASPIN kinase in the meiotic maturation of porcine oocytes is not yet known. Here, we found that HASPIN mRNA is constantly expressed in porcine oocyte maturation and subsequent early embryo development. H3T3p is highly enriched on chromosomes at germinal vesicle breakdown (GVBD) stage and thereafter maintains a low level in progression through metaphase I (MI) to metaphase II (MII). Correspondingly, H3T3p was completely abolished in oocytes treated with an inhibitor of HASPIN kinase. Functionally, inhibition of HASPIN activity led to a significant reduction in the rate of oocyte meiotic maturation and the limited cumulus expansion. Additionally, HASPIN inhibition caused both spindle disorganization and chromosome misalignment in oocytes at MI and MII stage. Importantly, HASPIN inhibition severely prevented deacetylation of several highly conserved lysine (K) residues of histone H3 and H4 including H3K9, H3K14, H4K5, H4K8, H4K12 and H4K16 on the metaphase chromosomes during oocyte meiotic maturation. Taken together, these results demonstrate that HASPIN kinase regulates porcine oocyte meiotic maturation via modulating histone deacetylation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call