Abstract
Haskell's type system has outgrown its Hindley-Milner roots to the extent that it now stretches to the basics of dependently typed programming. In this paper, we collate and classify techniques for programming with dependent types in Haskell, and contribute some new ones. In particular, through extended examples---merge-sort and rectangular tilings---we show how to exploit Haskell's constraint solver as a theorem prover, delivering code which, as Agda programmers, we envy. We explore the compromises involved in simulating variations on the theme of the dependent function space in an attempt to help programmers put dependent types to work, and to inform the evolving language design both of Haskell and of dependently typed languages more broadly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.