Abstract

Large-scale search methods are increasingly critical for many content-based visual analysis applications, among which hashing-based approximate nearest neighbor search techniques have attracted broad interests due to their high efficiency in storage and retrieval. However, existing hashing works are commonly designed for measuring data similarity by the Euclidean distances. In this paper, we focus on the problem of learning compact binary codes using the cosine similarity. Specifically, we proposed novel angular reconstructive embeddings (ARE) method, which aims at learning binary codes by minimizing the reconstruction error between the cosine similarities computed by original features and the resulting binary embeddings. Furthermore, we devise two efficient algorithms for optimizing our ARE in continuous and discrete manners, respectively. We extensively evaluate the proposed ARE on several large-scale image benchmarks. The results demonstrate that ARE outperforms several state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.