Abstract

The aim of this paper is to prove the achievability of rate regions for several coding problems by using sparse matrices (with logarithmic column degree) and maximum-likelihood (ML) coding. These problems are the Gel'fand-Pinsker problem, the Wyner-Ziv problem, and the one-helps-one problem (source coding with partial side information at the decoder). To this end, the notion of a hash property for an ensemble of functions is introduced and it is proved that an ensemble of q-ary sparse matrices satisfies the hash property. Based on this property, it is proved that the rate of codes using sparse matrices and ML coding can achieve the optimal rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.