Abstract

Plasmonic semiconductors are an emerging class of low-cost plasmonic materials, and the presence of a bandgap and band-bending in these materials offer new opportunities to overcome some of the limitations of plasmonic metals. Here, we demonstrate that in a plasmonic p-n heterojunction (Cu2-xSe-CdSe) the near-IR excitation (1.1 eV) of the hole plasmon in the p-Cu2-xSe phase results in rapid hot electron transfer to n-CdSe, with an energy 2.2 eV above the Fermi level. This hot electron generation and energy upconversion process can be well-described by a photothermionic mechanism, where the presence of a bandgap in p-Cu2-xSe facilitates the generation of energetic photothermal electrons. The lifetime of the transferred electrons in Cu2-xSe-CdSe can reach ∼130 ps, which is nearly 100× longer than that of its metal-semiconductor counterpart. This result demonstrates a novel approach for harvesting the sub-bandgap near IR photons using plasmonic p-n junctions and the potential advantages of plasmonic semiconductors for hot carrier-based devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.