Abstract

Biomolecular piezoelectrics, such as amino acids and peptides, exhibit significant shear piezoelectric responses in single crystal form. However, naturally occurring longitudinal piezoelectricity is rare and, when present, is dampened due to the multi-directional self-assembly in polycrystalline device layers. Here we utilise cocrystallisation to engineer a multicomponent crystalline salt hydrate of S(+)Mandelic Acid and LLysine, S-Mand•L-Lys•5H2O (1). This material exhibits a predicted single crystal longitudinal piezoelectric response of d33 = 3.5 pC/N. In polycrystalline form, 1 grows as an assembly of plates which increases the measured longitudinal piezoelectricity to 11 pC/N in its macroscopic solid-state. This is due to contributions from the shear piezoelectric response d36 = 10.8 pC/N, originating from the presence of plates oriented at acute angles relative to the surface. The brittleness of the crystals (E = 37 GPa) is overcome by reinforcing the substrate-free piezoelectric disc with a thin polymer coating to prevent flaking. Structural analysis confirms that the triclinic structure of 1 gives rise to this increased response due to the relative orientations of individual crystallites. Confined crystallisation of this multi-component form with a plate-like morphology, results in macroscopic self-assembly of an amino acid cocrystal that allows for the harvesting of higher shear piezoelectricity, but in a facile longitudinal configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.