Abstract

It was the aim of this pilot study to evaluate the feasibility, benefits and limitations of a variable square pulse (VSP) Er:YAG laser for harvesting intraoral bone grafts from either the chin or ramus region. In 12 patients (5 female, 7 male) a VSP Er:YAG laser was used to harvest bone grafts either from the ramus (3) or the symphyseal area (9). For the osteotomies, the Er:YAG laser was applied with a pulse energy of 1,000 mJ, a pulse duration of 300 microseconds, and a frequency of 12 Hz (energy density 157 J/cm(2)). The spot size was 0.9 mm and the handpiece was kept at a distance of about 10 mm from the bone surface. There was no visible carbonization or osseous debris on the surface of the osteotomy gap. Damage of adjacent soft tissue structures by mechanical or thermal trauma was minimal. Cutting efficiency was excellent and the overall time required for the procedure was not increased. However, due to a free manual positioning of the laser beam in the non-contact mode, it was difficult to get a well defined osteotomy line without irregularities on the surface. Slight deviations of the original angulation of the laser beam led to considerable bone loss which restricted osteotomy of ramus grafts to three cases. Depth control was limited to visual inspection. The bone ablation technique using a (VSP) Er:YAG laser yielded superior clinical results without impairment of wound healing and in comparison to other laser systems, no significant time loss occurred. Yet, the missing depth control and the necessity of carefully handling the laser beam position and its angulation limit the use of a (VSP) Er:YAG laser to regions where a safe and fixed guidance of the laser beam is feasible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call